Telegram Group & Telegram Channel
Объясните, как работает Transformer?

Архитектура Transformer используется преимущественно в языковых моделях. Их обучают на большом количестве текстов. Наиболее известная задача, в которой используются такие модели, это, конечно, генерация новых текстов. Нейросеть должна предсказать следующее слово в последовательности, отталкиваясь от предыдущих. Transformer же изначально был разработан для перевода. 

Его архитектура состоит из двух основных блоков:

▪️Энкодер (Encoder) (слева).
Этот блок получает входные данные (инпут) и создаёт их представления в векторном пространстве.
▪️Декодер (Decoder) (справа). 
Этот блок использует представления, полученные от энкодера, а также другие входные данные, чтобы сгенерировать последовательность. 

Основная фишка архитектуры Transformer заключается в наличии специального слоя — attention. Этот слой как бы указывает модели обращать особое внимание на определённые слова в последовательности. Это позволяет более эффективно обрабатывать контекст и улавливать сложные зависимости в тексте.

Во время обучения Transformer энкодер получает инпут (предложение) на определённом языке. Декодеру дают то же предложение, но на другом, целевом, языке. В энкодере слой attention может использовать все слова в предложении для создания контекстуализированного представления каждого слова, а декодер использует информацию об уже сгенерированных словах для предсказания следующего слова в последовательности. 

В целом, ключевой особенностью механизма attention является его способность динамически фокусироваться на различных частях входной последовательности при обработке каждого слова, что позволяет модели лучше понимать контекст и нюансы языка. 

#глубокое_обучение
#NLP



tg-me.com/ds_interview_lib/287
Create:
Last Update:

Объясните, как работает Transformer?

Архитектура Transformer используется преимущественно в языковых моделях. Их обучают на большом количестве текстов. Наиболее известная задача, в которой используются такие модели, это, конечно, генерация новых текстов. Нейросеть должна предсказать следующее слово в последовательности, отталкиваясь от предыдущих. Transformer же изначально был разработан для перевода. 

Его архитектура состоит из двух основных блоков:

▪️Энкодер (Encoder) (слева).
Этот блок получает входные данные (инпут) и создаёт их представления в векторном пространстве.
▪️Декодер (Decoder) (справа). 
Этот блок использует представления, полученные от энкодера, а также другие входные данные, чтобы сгенерировать последовательность. 

Основная фишка архитектуры Transformer заключается в наличии специального слоя — attention. Этот слой как бы указывает модели обращать особое внимание на определённые слова в последовательности. Это позволяет более эффективно обрабатывать контекст и улавливать сложные зависимости в тексте.

Во время обучения Transformer энкодер получает инпут (предложение) на определённом языке. Декодеру дают то же предложение, но на другом, целевом, языке. В энкодере слой attention может использовать все слова в предложении для создания контекстуализированного представления каждого слова, а декодер использует информацию об уже сгенерированных словах для предсказания следующего слова в последовательности. 

В целом, ключевой особенностью механизма attention является его способность динамически фокусироваться на различных частях входной последовательности при обработке каждого слова, что позволяет модели лучше понимать контекст и нюансы языка. 

#глубокое_обучение
#NLP

BY Библиотека собеса по Data Science | вопросы с собеседований




Share with your friend now:
tg-me.com/ds_interview_lib/287

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

NEWS: Telegram supports Facetime video calls NOW!

Secure video calling is in high demand. As an alternative to Zoom, many people are using end-to-end encrypted apps such as WhatsApp, FaceTime or Signal to speak to friends and family face-to-face since coronavirus lockdowns started to take place across the world. There’s another option—secure communications app Telegram just added video calling to its feature set, available on both iOS and Android. The new feature is also super secure—like Signal and WhatsApp and unlike Zoom (yet), video calls will be end-to-end encrypted.

At a time when the Indian stock market is peaking and has rallied immensely compared to global markets, there are companies that have not performed in the last 10 years. These are definitely a minor portion of the market considering there are hundreds of stocks that have turned multibagger since 2020. What went wrong with these stocks? Reasons vary from corporate governance, sectoral weakness, company specific and so on. But the more important question is, are these stocks worth buying?

Библиотека собеса по Data Science | вопросы с собеседований from ms


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA